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Introduction
• Primordial Black Holes (PBHs) form in the early universe out of the collapse of enhanced 

energy density perturbations upon horizon reentry of the typical size of the collapsing 

overdensity region. This happens when  [Carr - 1975].δ ≡
δρ
ρb

> δc(w ≡ p/ρ)
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See for reviews in [Carr et al.- 2020, Sasaki et al - 2018, Clesse et al. - 2017]
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PBHs and GWs

• 1) Primordial induced GWs generated through second order gravitational 
effects: , [Bugaev - 2009, Kohri & Terada - 2018].  

• 2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. - 
2008, Dong et al. - 2015].


• 3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].


• 4) GWs induced at second order by PBH energy density fluctuations 
[Papanikolaou et al. - 2020], abundantly produced during a PBH-dominated era.
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PBH-dominated era phenomenology

• GWs induced by PBH energy density fluctuations can interpret in a very good 
agreement the recently released PTA GW data [Lewicki et al. - 2023, Basilakos et al. 
- 2023]
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This isocurvature perturbation,  generated during the RD era will convert 
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gravitational potential .
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This isocurvature perturbation,  generated during the RD era will convert 
during the PBHD era to a curvature perturbation , associated to a PBH 
gravitational potential .
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4
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k
kevap )

−1/3



• Choosing as the gauge for the GW frame the Newtonian gauge, the metric is written 
as

ds2 = a2(η){−(1 + 2Φ)dη2 + [(1 − 2Φ)δij +
hij

2 ] dxidxj} .

Basics of Scalar Induced Gravitational Waves
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• The equation of motion for the Fourier modes, , read as:h ⃗k

ds2 = a2(η){−(1 + 2Φ)dη2 + [(1 − 2Φ)δij +
hij

2 ] dxidxj} .

hs,′￼′￼

⃗k
+ 2ℋhs,′￼

⃗k
+ k2hs
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= 4Ss

⃗k
.

Basics of Scalar Induced Gravitational Waves

30



• Choosing as the gauge for the GW frame the Newtonian gauge, the metric is written 
as


• The equation of motion for the Fourier modes, , read as:


• The source term,  can be recast as:

h ⃗k

S ⃗k

ds2 = a2(η){−(1 + 2Φ)dη2 + [(1 − 2Φ)δij +
hij

2 ] dxidxj} .

hs,′￼′￼

⃗k
+ 2ℋhs,′￼

⃗k
+ k2hs

⃗k
= 4Ss

⃗k
.

Ss
⃗k
= ∫

d3 ⃗q
(2π)3/2

es
ij( ⃗k)qiqj [2Φ ⃗qΦ ⃗k− ⃗q +
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• Choosing as the gauge for the GW frame the Newtonian gauge, the metric is written 
as


• The equation of motion for the Fourier modes, , read as:


• The source term,  can be recast as:


• Considering here only sub-horizon scales, where a flat spacetime approximation can 
be applied, the energy density of GWs reads as [M. Maggiore - 2000]
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ρGW(η, ⃗x) =
M2

Pl

8 (∂thαβ∂thαβ + ∂ihαβ∂ihαβ) .



• The spectral abundance,  of GWs can be written as:
ΩGW(η, k)

ΩGW(η, k) ≡
1

ρtot

dρGW

d ln k
=

1
24 ( k

a(η)H(η) )
2

𝒫h(η, k)

with 𝒫h(η, k) ≡
k3 |hk |2

2π2
∝ ∫ dv∫ du (∫ f(v, u, k, η)dη)

2

𝒫Φ(kv)𝒫Φ(ku) .
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• GWs induced by a dominating gas of PBHs might be detectable in the future with 
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• GWs induced by a dominating gas of PBHs might be detectable in the future with 
gravitational-waves experiments. 


• In the case of a monochromatic PBH mass distribution one finds a sudden transition 
between the PBH-dominated and the radiation-dominated era [Inomata et al. - 2019, 
Domenech et al. - 2020]. 
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The effect of an extended PBH mass 
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The PBH matter power spectrum
• In this case, we have a gas of PBHs with different masses. We should define a 

PBH mean separation scale accounting for the extended PBH mass distribution 
function.

44

⟨M⟩(t) ≡
∫ Mmax

Mmin
Mβ̄ (M, t) {1 − t − tini

Δtevap(Mf) }
1/3

d ln M

∫ Mmax

Mmin
β̄ (M, t) d ln M

⇒ r̄ = ( 3⟨M⟩
4πρPBH )

1/3

.

PδPBH
(k) ≡ ⟨ |δPBH

k |2 ⟩ =
4π

3k3
UV

, where k < kUV =
a
r̄

𝒫Φ(k) = S2
Φ(k)

2
3π ( k

kUV )
3

(5 +
4
9

k2

k2
d )

−2



Evolving the PBH gravitational potential
•Our physical system is comprised by matter in form of PBHs which “decays” to 

radiation through the process of PBH evaporation. 
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δ′￼PBH = − θPBH + 3Φ′￼− aΓΦ
θ′￼PBH = − ℋθPBH + k2Φ

δ′￼r = −
4
3

(θr − 3Φ′￼) + aΓ
ρPBH

ρr
(δPBH − δr + Φ)

θ′￼r =
k2

4
δr + k2Φ − aΓ

3ρPBH

4ρr ( 4
3

θr − θPBH)
Φ′￼= −

k2Φ + 3ℋ2Φ + 3
2 ℋ2 ( ρPBH

ρtot
δPBH + ρr

ρtot
δr)

3ℋ

δα ≡ (ρα − ρtot)/ρtot,

θ ≡ ∂vi /∂xi

′￼≡
d
dη

, with dη ≡ dt/a

⟨Γ⟩(t) =
∫ tevap,max

tevap,min
β(tevap)ΓM(tevap, t)d ln tevap

∫ tevap,max

tevap,min
β(tevap)d ln tevap

, with ΓM(tevap, t) ≡ −
1
M

dM
dt

=
1

3(tevap − t)

Adiabatic initial conditions : δPBH,ini = − 2Φini, δr,ini =
4
3

δPBH,ini, θPBH,ini = θr,ini = 0, Φini = 1



The gravitational potential Φ
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The gravitational potential Φ
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a) δPBH,k ∝ a : δPBH,kNL
(ηr) = 1 ⇒ kNL = k3/7
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[S. Matarrese et al. - 1986, 

S. Matarresse and L. Verde - 2008] 

[Path integral formalism for n-point 
correlation functions (galaxy halo bias)]

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k
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𝒫δPBH
(k) ≃ 𝒫ℛ(k)ν4 ( 4

9σR )
4

∫
d3p1d3p2

(2π)6
τNL(p1, p2, p1, p2)W2

local(p1)W2
local(p2)Pℛ(p1)Pℛ(p2)

+
k3

2π2
(k − independent terms)

kR ≪ 1 R ∼ 1/kf

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k
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kR ≪ 1 R ∼ 1/kf

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k
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local(p1)W2
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+
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2π2
(k − independent terms)

τ̄NL

{
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kR ≪ 1 R ∼ 1/kf

ξPBH(x1, x2) ≡ ⟨δPBH(x1)δPBH(x2)⟩ = ∫ 𝒫PBH(k)ek⋅(x1−x2)d ln k

𝒫δPBH
(k) ≃ 𝒫ℛ(k)ν4 ( 4

9σR )
4

∫
d3p1d3p2

(2π)6
τNL(p1, p2, p1, p2)W2

local(p1)W2
local(p2)Pℛ(p1)Pℛ(p2)

+
k3

2π2
(k − independent terms)

τ̄NL

{
𝒫Φ(k) = S2

Φ(k)(5 +
4
9

k2

k2
d )

−2

[( 4ν
9σR )

4

τ̄NL𝒫ℛ(k) + 𝒫δPBH,Poisson(k)]
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Ansatz 1 : 𝒫ℛ = 𝒫ℛ(kf)e
− 1

2σ2 ln2( k
kf ) + 2.2 × 10−9 ( k

0.05Mpc−1 )
0.965−1

, with 𝒫ℛ(kf) ≃ 10−2
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Ansatz 1 : 𝒫ℛ = 𝒫ℛ(kf)e
− 1
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0.05Mpc−1 )
0.965−1

, with 𝒫ℛ(kf) ≃ 10−2

Ansatz 2 : τNL(k1, k2, k3, k4) =
τNL(kf)

6 [e− 1
2σ2τ (ln2 k1

kf
+ ln2 k2

kf ) + 5 perms]
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 Scale Hierarchy : 105Mpc−1 < kevap < kd < kc < kUV ≪ kf ∼ 1/R
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ΩGW(2kd, η0) ≤ 10−6 ⇒ τ̄NL𝒫ℛ(k) ≤ 4 × 10−20Ω−17/9
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