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Introduction

 Primordial Black Holes (PBHs) form in the early universe out of the collapse of enhanced
energy density perturbations upon horizon reentry of the typical size of the collapsing

)
overdensity region. This happens when 0 = o > o.(w = plp) [Carr - 1975].
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BBN < t=1s oncmeemtmstuemreens Mppy = 10° M, » SMBHs, LSS?

QCD Phase Transition < t = 10775 enosmsmrbeslacavenes  IMppp = M, » LIGO/VIRGO Progenitors

» PBHsas DM ?

f=10"235 st = 1010 » PBHSs evaporate today
t=10"%% mppy = 10°g » PBHSs evaporate at BBN
End of Inflation < t = 10735 mppy = 10°g

See for reviews in [Carr et al.- 2020, Sasaki et al - 2018, Clesse et al. - 2017]
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PBHs and GWs

1) Primordial induced GWs generated through second order gravitational
effects: 3(3> 5 hd?, [Bugaev - 2009, Kohri & Terada - 2018].

/\

Ws  PBHs

2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. -
2008, Dong et al. - 2015].

3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].

4) GWs induced at second order by PBH energy density fluctuations
[Papanikolaou et al. - 2020], abundantly produced during a PBH-dominated era.
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dark radiation degrees of freedom which can increase N .

Evaporation of light PBHs can also produce naturally the baryon asymmetry
through CP violating out-of-equilibrium decays of Hawking evaporation products [J. D.
Barrow et al. - 1991, T. C. Gehrman et al. - 2022, N. Bhaumik et al. - 2022].
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PBHs with mppy; < 10°g (They evaporate before BBN)

These ultralight PBHs can drive the reheating process through their evaporation
[Zagorac et al. - 2019, Martin et al. - 2019, Inomata et al. - 2020] during which all the
SM particles can be produced.

Hawking evaporation of ultralight PBHs can alleviate as well the Hubble tension [Hooper et
al. - 2019, Nesseris et al. - 2019, Lunardini et al. - 2020] by injecting to the primordial plasma

dark radiation degrees of freedom which can increase N .

Evaporation of light PBHs can also produce naturally the baryon asymmetry
through CP violating out-of-equilibrium decays of Hawking evaporation products [J. D.
Barrow et al. - 1991, T. C. Gehrman et al. - 2022, N. Bhaumik et al. - 2022].

GWs induced by PBH energy density fluctuations can interpret in a very good

agreement the recently released PTA GW data [Lewicki et al. - 2023, Basilakos et al.
- 2023]
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Gravitational waves from PBH fluctuations:
The Gaussian case

[T. Papanikolaou, V. Vennin, D. Langlois, JCAP 03 (2021) 053]
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Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018]

Same mass [Dizgah, Franciolini & Riotto - 2019]
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The PBH Matter Field

Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018]

® ® Ps Same mass [Dizgah, Franciolini & Riotto - 2019]

v

_\ 3

Az (7 A7 a

P. k)=(|sPBHy=—"—(=) = . where k < kv = —

son K = ([ 6,77]7) 3 <a> 300 uv =
¢ — OpPpBH _ i Opy
PPBH 4 p,

_ Opppy  Onppy .
PPBH,f K Prf S¢ =~ Opgy = o~ [Isocurvature perturbation]

PPBH NpBH

Oppprf + 0P =0
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The PBH Matter Field

Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018]

® ® Ps Same mass [Dizgah, Franciolini & Riotto - 2019]

, where k < kyy =

Q|
N
[O'Y)

I
N

S|
TN RS

Py (0 = (16727 = 22 (—

3 3k,

This isocurvature perturbation, opg; generated during the RD era will convert

during the PBHD era to a curvature perturbation {pgy;, associated to a PBH
gravitational potential .
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The PBH Matter Field

Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018]

® ® Ps Same mass [Dizgah, Franciolini & Riotto - 2019]

v

_\ 3
A (7 47

P5PBH(k) = <|5/§BH|2> =? (Z) = YRR where k < kyy =
Uv

TN RS

This isocurvature perturbation, opgy; generated during the RD era will convert
during the PBHD era to a curvature perturbation (ppyy, associated to a PBH
gravitational potential ®.

3 -2 —1/3
2 k 4 k* , 2 k
P (k) = Sg(k) S5+——] ,withSpk)=(1/=
37 \ kyy 9 k3 3 Keyap
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Basics of Scalar Induced Gravitational Waves

* Choosing as the gauge for the GW frame the Newtonian gauge, the metric is written

asS

h;; o
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Basics of Scalar Induced Gravitational Waves

Choosing as the gauge for the GW frame the Newtonian gauge, the metric is written

asS
h

The equation of motion for the Fourier modes, hz, read as:
hs" + 2 S + k*hS = 4S5
k k k k

The source term, S,—g can be recast as:

&g -
S s . -1/ . — 1y .
S%—J el (K)qiq; [2(I)ZICI>,€_§+ ('O + DI IO+ P )|

(2m)32 * 3(1 +w)
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Basics of Scalar Induced Gravitational Waves

Choosing as the gauge for the GW frame the Newtonian gauge, the metric is written

asS

h;; o

The equation of motion for the Fourier modes, hz, read as:

hs" + 2%h + k*hs = 455
k k k k

The source term, S,—g can be recast as:

&g -
S8 = J ei(k)qq; [2@;}%_5 + (D, + @5)(?’/‘1d>é_21 + d)z_a)] .

k (2m)32 3(1 + w)

Considering here only sub-horizon scales, where a flat spacetime approximation can
be applied, the energy density of GWs reads as [M. Maggiore - 2000]

. _ M " "
pPew(i, X) = Ky (athaﬂath '+ 0ihyp0ih ﬁ) -
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The Gravitational Wave Spectrum

e The spectral abundance, Q5w(7, k) of GWs can be written as:

1 dpgw 1 koo’
Q k) = = P.(n, k
ow(1-K) Pt d1Ink 24 (a(n)H(n)) i
K| Iy |

2
with £, (n,k) = X Jdv[du <[ fv,u, k, n)dn) P o(kV)Pg(ku) .

272
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The Gravitational Wave Spectrum

e The spectral abundance, Q5w(7, k) of GWs can be written as:

1 dpgw 1 koo’
Q k) = = P.(n, k
ow(1-K) Pt d1Ink 24 <a(17)H(17)> i
K| Iy |

with P, (n, k) =

2
X Jdv[du <[ fv,u, k, n)dn) P o(kV)Pg(ku) .
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The Gravitational Wave Spectrum
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1 dpgw 1 koo’
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K| Iy |
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The Gravitational Wave Spectrum

e The spectral abundance, Q5w(7, k) of GWs can be written as:

1 dpgw 1 koo’
Q k) = = P.(n, k
ow(1-K) Pt d1Ink 24 <a(77)H(17)> i
K| Iy |

with P, (n, k) =

2
X Jdv[du <[ fv,u, k, n)dn) P o(kV)Pg(ku) .

2

Qpprs = 1076

107 43 k

10-18 4 W QGW(neVap’ k) X ( 109 ) Qllj]63/l3zl,f X ky
/ W 0 g 8 for k> %d

10—20 .

w(n
= 3

—— mppu=10'g

109 1/4

_ g

QGW,tot(nevap) < 1 = QPBH,f < 10 4( )
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—— mppu=10°g

—— mppu=10Tg

l l l l l [T.Papanikolaou, V. Vennin, D. Langlois - 2020]
10! 10? 10° 107 109
k/ (aevap Hevap )
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f(Hz)

GW Detectability

10° 10
103 - 108
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1071 106 §
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1073 100 5
0g
o
10_5 104
=
10_7 103
10_9 102
10~ 11 : : . . 10!
10715 10712 10~? 10-6 1073
pBH.f

[Papanikolaou et al. - 2020]

* GWs induced by a dominating gas of PBHs might be detectable in the future with
gravitational-waves experiments.
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GW Detectability
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()
B [Domenech et al. - 2020]

[Papanikolaou et al. - 2020]

GWs induced by a dominating gas of PBHs might be detectable in the future with
gravitational-waves experiments.

In the case of a monochromatic PBH mass distribution one finds a sudden transition
between the PBH-dominated and the radiation-dominated era [Inomata et al. - 2019,
Domenech et al. - 2020].
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The effect of an extended PBH mass
distribution

[T. Papanikolaou, JCAP 10 (2022) 089]
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The PBH mass function and the PBH abundance

PAK) = A, (kiko)" O,

ith n.(k) = % (X
wi ns()—ns,0+2—!n k_o
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The PBH mass function and the PBH abundance
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The PBH mass function and the PBH abundance

1 d
)ns(k)—l M) = PpBH within peak theory
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The PBH mass function and the PBH abundance
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The PBH matter power spectrum

* In this case, we have a gas of PBHs with different masses. We should define a
PBH mean separation scale accounting for the extended PBH mass distribution
function.

1/3
Mmax 0 = tini
IMmm Mp (M. 1 {1 Dty (M) } dInM (M) \ 7
(M)(0) = _ 5= < ) |
Lfma" B(M,H)dIn M 47ppeH

min

, where k < kyy =

4
P, (&) = (|87%H %) = —
3kUV

P (k)—S2(k)2 X | 5+ik—2 )
(D e R¥/4 kUV 9 kg
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Evolving the PBH gravitational potential

* Our physical system is comprised by matter in form of PBHs which “decays” to
radiation through the process of PBH evaporation.
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Evolving the PBH gravitational potential

* Our physical system is comprised by matter in form of PBHs which “decays” to
radiation through the process of PBH evaporation.
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4
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0 = —6. + k*® — al’ —0.— 0 F— Wi -
r 4 T 4,0r 3 r PBH = dﬂ R with di’] = dt/a
KD + 3720 + 27 (’“’BH Soppy + 2 51,)
/ Phrot Prot
O = —
3H
teva ,max
()@ g Do ioup D e ith Ty (feyaps 1) L v 1
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[ B ap) A 10 g e M A 3l — 1)

evap,min
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The gravitational potential ®
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The gravitational potential ®
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The gravitational potential ®
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The GW spectrum
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The GW spectrum
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Gravitational waves from primordial black hole
fluctuations: The effect of non-Gaussianities

[T. Papanikolaou, X. C. He, X. H. Ma, Y. F. Cai, E. N. Saridakis, M. Sasaki, 2403.00660]
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Primordial non-Gaussianities of local type

(27)36®) (k1 + k2) Pr (k)
(27‘(’)3(5(3) (kl + ko + k:3)

(R(k1)R(k2))
(R(k1)R(k2)R(k3))

X ngL [Pr (k1) Pr(k2) + 2 perms]
(R(k1)R(k2)R(k3)R(ka)) = (2)36® (k1 + k2 + k3 + ka)

54
X {%QNL [PR(kl)PR(kQ)PR(k3) + 3 perms]

+ 7NL [Pr (k1) Pr(k2) Pr(|k1 + k3|) + 11 perms] }
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Primordial non-Gaussianities of local type

(27)36®) (k1 + ko) Pr (k)
(27)36®) (k1 + ko + ks3)

(R(k1)R(k2))
(R(k1)R(k2)R(k3))

6
X 5fNL [Pr(k1)Pr(k2) + 2 perms|
(271')35(3)(161 + ko + kg + k:4)

54
X {%QNL [PR(kl)PR(kQ)PR(k3) + 3 perms]

(R(k1)R(k2)R(k3)R(ka))

+ TNL [Pr (k1) Pr(k2) Pr(|k1 + k3|) + 11 perms] }

[Path integral formalism for n-point [S. Matarrese et al. - 1986,
correlation functions (galaxy halo bias)] S. Matarresse and L. Verde - 2008]

Eppu(X1s Xo) = (Sppu(X1)Oppu(Xy)) = [@pBH(k)ek'(Xl_x2)d Ink
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Primordial non-Gaussianities of local type

Eppn(X1> X2) = (Gppu(X1)0ppu(Xa)) = [QPBH(k)€k°(X1_X2)d Ink

4

! d’p,d°p,
R

k3
+——(k — 1ndependent terms)
272
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Primordial non-Gaussianities of local type

Eppn(X1> X2) = (Gppu(X1)0ppu(Xa)) = [g’pBH(k)@k'(Xl_XZ)d Ink

Py () = Pyl — [ Cndp W2 (0 YW (D)Por(D))P
5PBH( ) B 9?( )V 90, 6 TNL(pl’pz’pl’pz) local(pl) local(pZ) %(pl) 93(]92)
o (27)
k3
+——(k — independent terms) H_,—J
272 =
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Primordial non-Gaussianities of local type
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The non-Gaussian PBH matter power spectrum
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The non-Gaussian PBH matter power spectrum
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The non-Gaussian PBH matter power spectrum
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The non-Gaussian PBH matter power spectrum
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Non-Gaussian Induced GWs
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Non-Gaussian Induced GWs
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Constraining non-Gausianities
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The portal of PBH induced GWs induced can serve as a new messenger from the early Universe.
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Thanks for your attention!
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